575 research outputs found

    Eye Tracking Impact on Quality-of-Life of ALS Patients

    Get PDF
    Chronic neurological disorders in their advanced phase are characterized by a progressive loss of mobility (use of upper and lower limbs), speech and social life. Some of these pathologies, such as amyotrophic lateral sclerosis and multiple sclerosis, are paradigmatic of these deficits. High technology communication instruments, such as eye tracking, can be an extremely important possibility to reintroduce these patients in their family and social life, in particular when they suffer severe disability. This paper reports and describes the results of an ongoing experimentation about Eye Tracking impact on the quality of life of amyotrophic lateral sclerosis patients. The aim of the experimentation is to evaluate if and when eye tracking technologies have a positive impact on patients' live

    The Blue Straggler population in the globular cluster M53 (NGC5024): a combined HST, LBT, CFHT study

    Full text link
    We used a proper combination of multiband high-resolution and wide field multi-wavelength observations collected at three different telescopes (HST, LBT and CFHT) to probe Blue Straggler Star (BSS) populations in the globular cluster M53. Almost 200 BSS have been identified over the entire cluster extension. The radial distribution of these stars has been found to be bimodal (similarly to that of several other clusters) with a prominent dip at ~60'' (~2 r_c) from the cluster center. This value turns out to be a factor of two smaller than the radius of avoidance (r_avoid, the radius within which all the stars of ~1.2 M_sun have sunk to the core because of dynamical friction effects in an Hubble time). While in most of the clusters with a bimodal BSS radial distribution, r_avoid has been found to be located in the region of the observed minimum, this is the second case (after NGC6388) where this discrepancy is noted. This evidence suggests that in a few clusters the dynamical friction seems to be somehow less efficient than expected. We have also used this data base to construct the radial star density profile of the cluster: this is the most extended and accurate radial profile ever published for this cluster, including detailed star counts in the very inner region. The star density profile is reproduced by a standard King Model with an extended core (~25'') and a modest value of the concentration parameter (c=1.58). A deviation from the model is noted in the most external region of the cluster (at r>6.5' from the center). This feature needs to be further investigated in order to address the possible presence of a tidal tail in this cluster.Comment: 25 pages, 9 figures, accepted for publication on Ap

    Euclid space mission: a cosmological challenge for the next 15 years

    Get PDF
    Euclid is the next ESA mission devoted to cosmology. It aims at observing most of the extragalactic sky, studying both gravitational lensing and clustering over \sim15,000 square degrees. The mission is expected to be launched in year 2020 and to last six years. The sheer amount of data of different kinds, the variety of (un)known systematic effects and the complexity of measures require efforts both in sophisticated simulations and techniques of data analysis. We review the mission main characteristics, some aspects of the the survey and highlight some of the areas of interest to this meetingComment: to appear in Proceedings IAU Symposium No. 306, 2014, "Statistical Challenges in 21st Century Cosmology", A.F. Heavens, J.-L. Starck & A. Krone-Martins, ed

    Wide and deep near-UV (360nm) galaxy counts and the extragalactic background light with the Large Binocular Camera

    Full text link
    Deep multicolour surveys are the main tool to explore the formation and evolution of the faint galaxies which are beyond the spectroscopic limit with the present technology. The photometric properties of these faint galaxies are usually compared with current renditions of semianalytical models to provide constraints on the fundamental physical processes involved in galaxy formation and evolution, namely the mass assembly and the star formation. Galaxy counts over large sky areas in the near-UV band are important because they are difficult to obtain given the low efficiency of near-UV instrumentation, even at 8m class telescopes. A large instrumental field of view helps in minimizing the biases due to the cosmic variance. We have obtained deep images in the 360nm U band provided by the blue channel of the Large Binocular Camera at the prime focus of the Large Binocular Telescope. We have derived over an area of ~0.4 sq. deg. the galaxy number counts down to U=27 in the Vega system (corresponding to U=27.86 in the AB system) at a completeness level of 30% reaching the faintest current limit for this wavelength and sky area. The shape of the galaxy counts in the U band can be described by a double power-law, the bright side being consistent with the shape of shallower surveys of comparable or greater areas. The slope bends over significantly at U>23.5 ensuring the convergence of the contribution by star forming galaxies to the EBL in the near-UV band to a value which is more than 70% of the most recent upper limits derived for this band. We have jointly compared our near-UV and K band counts collected from the literature with few selected hierarchical CDM models emphasizing critical issues in the physical description of the galaxy formation and evolution.Comment: Accepted for publication in A&A. Uses aa.cls, 9 pages, 4 figures. Citations update

    Planck pre-launch status: calibration of the Low Frequency Instrument flight model radiometers

    Get PDF
    The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called Radiometer Chain Assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20K and the back-end at 300K, and with an external input load cooled to 4K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e.g. 1/f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential inputs to the Planck-LFI data analysis.Comment: 15 pages, 18 figures. Accepted for publication in Astronomy and Astrophysic

    Planck intermediate results. XLI. A map of lensing-induced B-modes

    Get PDF
    The secondary cosmic microwave background (CMB) BB-modes stem from the post-decoupling distortion of the polarization EE-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced BB-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB BB-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization EE-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced BB-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) BB-mode map can be used to measure the lensing BB-mode power spectrum at multipoles up to 20002000. In particular, when cross-correlating with the BB-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced BB-mode power spectrum measurement at a significance level of 12σ12\,\sigma, which agrees with the theoretical expectation derived from the Planck best-fit Λ\LambdaCDM model. This unique nearly all-sky secondary BB-mode template, which includes the lensing-induced information from intermediate to small (10100010\lesssim \ell\lesssim 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial BB-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB BB-modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map is part of the PR2-2015 Cosmology Products; available as Lensing Products in the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and described in the 'Explanatory Supplement' https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma

    SPACE: the SPectroscopic, All-Sky Cosmic Explorer

    Get PDF
    We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015-2025 planning cycle. SPACE aims at producing the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts of more than half a billion galaxies at 0 < z < 2 down to AB approximately 23 over 37r sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB approximately 26 and at 2 < z < l0+. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover, the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, the large scale distribution of galaxies. The datasets from the SPACE mission will represent a long lasting legacy that will be data mined for many years to come

    Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources

    Get PDF
    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > 10310^3 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
    corecore